Home
Class 12
MATHS
Let f(theta)=sintheta(sintheta+sin3theta...

Let `f(theta)=sintheta(sintheta+sin3theta).`then `f(theta)`

A

`ge` 0, only when `theta ge 0`

B

`le` 0, for all real `theta`

C

`ge` 0, for all real `theta`

D

`le`0, only when `theta le 0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

Prove the following identities : (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3)theta-sin^(3)theta)/(costheta-sintheta)=2

If cos(2theta)=0" then "|{:(0,costheta,sintheta),(costheta,sintheta,0),(sintheta,0,costheta):}|^2="............"

Prove : (2 sin theta cos theta-cos theta)/(1-sin theta+sin^(2) theta-cos^(2) theta)=cot theta

Let P={theta:sintheta-costheta=sqrt2cos theta} and Q={theta:sintheta+costheta=sqrt2sintheta} be two set. Then,

Prove the following : (All angles are acute angles.) (sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta)=2/(sin^(2)theta-cos^(2)theta)

If A=[{:(costheta,sintheta),(-sintheta,costheta):}] then prove that A^(n)=[{:(cosntheta,sinntheta),(-sinn theta,cosntheta):}],n inN .

Prove the following identities. where the angles involved are acute angles for which the expressions are defined. (sintheta-2sin^(3)theta)/(2cos^(3)theta-costheta)=tantheta

If f (theta) = |sin theta| + |cos theta|, theta in R , then