Home
Class 12
MATHS
If ax^(2)+by^(2)=1 cute a'x^(2)+b'y^(2)=...

If `ax^(2)+by^(2)=1` cute `a'x^(2)+b'y^(2)=1` orthogonally, then

A

`(1)/(a)-(1)/(a')=(1)/(b)-(1)/(b')`

B

`(1)/(a)+(1)/(a')=(1)/(b)+(1)/(b')`

C

`(1)/(a)+(1)/(b)=(1)/(a')+(1)/(b')`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 are orthogonally then …………

Prove that the curves x^(2)+y^(2)=ax and x^(2)+y^(2)=by are cuts orthogonally.

If the lines given by ax^(2)+2hxy+by^(2)=0 are equally inclined to the lines given by ax^(2)+2hxy+by^(2)+lambda(x^(2)+y^(2))=0 , then

If area bounded by the curves x=ay^(2) and y=ax^(2) is 1, then a= ______ (agt0)

If ax^(2) + 2hxy + by^(2) + 2gx + 2f y + c = 0 , then show that (dy)/(dx).(dx)/(dy)=1

Eccentricity of ellipse (x^(2))/(169) + (y^(2))/(25) = 1 and (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 then (a)/(b) = ……..

If |ax^2 + bx+c|<=1 for all x is [0, 1] ,then

Two curves a_(i)x^(2) + b_(i)y^(2)= 1, i=1, 2 where a_(1) ne a_(2), b_(1) ne b_(2), a_(1), a_(2), b_(1), b_(2) ne 0 may intersect orthogonally If ______