Home
Class 12
MATHS
f(x) is a polynomial of degree 4 with re...

f(x) is a polynomial of degree 4 with real coefficients such that `f(x)=0` is satisfied by `x=1,2,3` only, then `f'(1).f'(2).f'(3)` is equal to

A

0

B

2

C

`-1`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is a polynomial of degree 5 with real coefficients such that f(|x|)=0 has 8 real roots, then f(x)=0 has

If f(x) is a polynominal of degree 4 with leading coefficient '1' satisfying f(1)=10,f(2)=20 and f(3)=30, then ((f(12)+f(-8))/(19840)) is …………. .

If f(x) is a polynomial of degree n(gt2) and f(x)=f(alpha-x) , (where alpha is a fixed real number ), then the degree of f'(x) is

Let f(x)=1/2[f(xy)+f(x/y)] " for " x,y in R^(+) such that f(1)=0,f'(1)=2. f'(3) is equal to

Let f(x)=1/2[f(xy)+f(x/y)] " for " x,y in R^(+) such that f(1)=0,f'(1)=2. f(e) is equal to

let f(x) be a polynomial function of second degree. If f(1)=f(-1)and a_(1),a_(2),a_(3) are in AP, then show that f'(a_(1)),f'(a_(2)),f'(a_(3)) are in AP.

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find f+g

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find f-g

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find (f)/(g) .

If f(x)= x^(2 )+ 2x + 3 then find f(1), f(2), f(3)