Home
Class 12
MATHS
Let y = f(x), f : R ->R be an odd differ...

Let y = f(x), `f : R ->R` be an odd differentiable function such that `f'''(x)>0` and `g(alpha,beta)=sin^8alpha+cos^8beta+2-4sin^2alpha cos^2 beta` If `f''(g(alpha, beta))=0` then `sin^2alpha+sin^2beta` is equal to

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If cot (alpha + beta )=0 , then sin(alpha+2beta ) =

x+y-ln(x+y)=2x+5 has a vertical tangent at the point (alpha,beta) then alpha+beta is equal to

If cosalpha+cosbeta=0=sinalpha+sinbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta) .

If cos( alpha+beta) + sin(alpha-beta) = 0 and 2010tan beta + 1 = 0 then tan alpha is equal to

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

Let -pi/6 beta_1 and alpha_2 >beta_2 , then alpha_1 + beta_2 equals

cos^(2) alpha +cos^(2) beta +cos^(2) gamma is equal to

If cos(alpha+beta)=(4)/(5),sin(alpha-beta)=(5)/(13),0ltalpha,betalt(pi)/(4) then tan2alpha = …………

If alpha and beta are the roots of the equation x^(2)-x+1=0, alpha^(2009)+beta^(2009 is equal to

A real value of x satsifies the equation ((3-4ix)/(3+4ix)) =alpha- ibeta(alpha, beta in R) , if alpha^(2)+beta^(2) is equal to