Home
Class 12
MATHS
Let f(x)=|[1,1,1] , [3-x,5-3x^2,3x^3-1] ...

Let `f(x)=|[1,1,1] , [3-x,5-3x^2,3x^3-1] , [2x^2-1,3x^5-1,7x^8-1]|` then the equation of `f(x)=0` has

A

A) no real solution

B

B) atmost one real root

C

C) atleast two real root

D

D) exactly one real root in (0, 1) and no other real root

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation 3^(x-1)+5^(x-1)=34 has

If f(x)=|{:(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x^2-1)):}| then f(100)= ………

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

If f(x)= x^(3)- (1)/(x^(3)) then show that f(x)+ f((1)/(x))= 0

If f(x)=2x^(2)-3x+5 then find the approximate value of f(1.05) .

If f(x)=|1x x+1 2x x(x-1)(x+1) x3 x(x-1) x(x-1)(x-2) (x+1)x(x-1)| then f(500) is equal to 0 b. 1 c. 500 d. -500

The total number of distinct x in R for which |[x, x^2, 1+x^3] , [2x,4x^2,1+8x^3] , [3x, 9x^2,1+27x^3]|=10 is (A) 0 (B) 1 (C) 2 (D) 3

The equation |((1+x)^2,(1-x)^2,-(2+x^2)),(2x+1,3x,1-5x),(x+1,2x,2-3x)|+|((1+x)^2,2x+1,x+1),((1-x)^2,3x,2x),(1-2x,3x-2,2x-3)|=0 has has (a) no real solution (b) 4 real solutions (c) two real and two non-real solutions (d) infinite number of solutions, real or non-real

If f(x)= |{:(x,x^(2),x^(3)),(1,2,3),(0,1,x):}| underset(x to1)limf(x) is equal to

If f(x)=x^(3)-12x+p,p in {1,2,3,…,15} and for each 'p', the number of real roots of equation f(x)=0 is denoted by theta , the 1/5 sum theta is equal to ……….. .