Home
Class 12
MATHS
Let F(x)=int(sinx)^(cosx)e^((1+sin^(-1)(...

Let `F(x)=int_(sinx)^(cosx)e^((1+sin^(-1)(t))dt` on `[0,(pi)/(2)]`, then

A

`F''(c)=0" for all" c in (0,(pi)/(2))`

B

`F''(c)=0" for some" c in (0, (pi)/(2))`

C

`F''(c) = 0" for no value of " c in (0,(pi)/(2))`

D

`F(c) ne 0" for all "c in (0,(pi)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin2x)/((sinx+cosx)^2)dx

Let f(x) =int_(-2)^xe^((1+t)^2)dt and g(x) = f(h(x)) ,where h(x) is defined for all x in R . If g'(2) = e^4 and h' (2)=1 then absolute value of sum of all possible values of h(2), is

|{:(sinx,cosx),(sinx,sinx):}|=|{:(cosx,cosx),(cosx,sinx):}|,x in(0,pi/2) then x=……….

Let f : (0, oo) rarr R be a continuous function such that f(x) = int_(0)^(x) t f(t) dt . If f(x^(2)) = x^(4) + x^(5) , then sum_(r = 1)^(12) f(r^(2)) , is equal to

Fundamental theorem of definite integral : (d)/(dx)(F(x))=(e^(sinx))/(x),ngt0 . If int_(1)^(4)(2e^(sinx^(2)))/(x)dx=F(k)-F(1) then the possible value of k is……..

Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

Find the number of solution of the equation 1+e^(cot^(2)x)=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x)forx in (0,5pi)dot

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f(x)=((2sinx+sin2x)/(2cosx+sin2x)*(1-cosx)/(1-sinx)): x in R. Consider the following statements. I. Domain of f is R. II. Range of f is R. III. Domain of f is R-(4n-1)pi/2, n in I. IV. Domain of f is R-(4n+1)pi/2, n in I. Which of the following is correct?

Evaluation of definite integrals by subsitiution and properties of its : g(x)=int_(0)^(x)f(t)dt where (1)/(2)lef(t)le1,tin[0,1] and 0lef(t)le(1)/(2),tin(1,2] then ………..