Home
Class 12
MATHS
if |f(x1)-f(x2)|<=(x1-x2)^2Find the equa...

if `|f(x_1)-f(x_2)|<=(x_1-x_2)^2`Find the equation of tangent to the curve `y= f(x)` at the point `(1, 2).`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=cos(a_1+x)+1/2cos(a_2+x)+1/(2^2)cos(a_3+x)++1/(2^(n-1))cos(a_n+x) where a)1,a_2 a_n in Rdot If f(x_1)=f(x_2)=0,t h e n|x_2-x_1| may be equal to pi (b) 2pi (c) 3pi (d) pi/2

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

f(x)= bx^(2) + cx and d and f(x+ 1) - f(x)= 8x + 3 then…….

If 2f (x)- 3f((1)/(x))= x^(2) (x ne 0) then f(2)= ……

If y=f(x) is a curve and if there exists two points A(x_(1),f(x_(1)) and B(x_(2),f(x_(2)) on it such that f'(x_(1))=-(1)/(f'(x_(2)))=(f(x_(2))-f(x_(1)))/(x_(2)-x_(1)) , then the tangent at x_(1) is normal at x_(2) for that curve. Now, anwer the following questions. Number of such lines on the curve y=|lnx|, is

If 5f(x)+3f(1/x)=x+2 and y=x f(x), then find dy/dx at x=1 .

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} For x in(-1,00),f(x)+g(x) is

Let f(x)=f_(1)(x)-2f_(2)(x), where f_(1)(x)={{:(min{x^(2),|x|}",",|x|le1),(max{x^(2),|x|}",",|x|gt1):} "and "f_(2)(x)={{:(min {x^(2),|x|}",",|x|gt1),(max{x^(2),|x|}",",|x|le1):} "and let "g(x)={{:(min{f(t),-3letlex,-3lexlt0}),(max{f(t),0letltx,0lexle3}):} The graph of y=g(x) in its domain is broken at

If f is an even function, then find the realvalues of x satisfying the equation f(x)=f((x+1)/(x+2))

If the function f(x) satisfies lim_(xrarr1)(f(x)-2)/(x^(2)-1)=pi , evaluate lim_(xrarr1)f(x) .