Home
Class 12
MATHS
The point(s) on the curve y^3+\ 3x^2=1...

The point(s) on the curve `y^3+\ 3x^2=12 y` where the tangent is vertical, is(are) ?? (a) `(+-4/(sqrt(3)),\ -2)` (b) `(+-\ sqrt((11)/3,\ )\ 1)` (c)`(0,\ 0)` (d) `(+-4/(sqrt(3)),\ 2)`

A

`(pi(4)/(sqrt3),-2)`

B

`(pisqrt((11)/(3)),0)`

C

`(0,0)`

D

`(pi(4)/(sqrt3),2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The point on the curve y^(3)+3x^(2)=12y where the tangent is vertical is ………..

sqrt(3)x^(2) - sqrt(2)x + 3sqrt(3)=0

Find the points on the curve x^(2)+y^(2)-2x-3=0 at which the tangents are parallel to the X-axis.

Find a point on the curve y= (x-3)^(2) , where the tangent is parallel to the chord joining the points (3,0) and (4,1).

If 0lt=xlt=pi/3 then range of f(x)=sec(pi/6-x)+sec(pi/6+x) is (4/(sqrt(3)),oo) (b) (4/(sqrt(3)),oo) (0,4/(sqrt(3))) (d) (0,4/(sqrt(3)))

The abscissa of the point on the curve sqrt(x y)=a+x the tangent at which cuts off equal intercepts from the coordinate axes is -a/(sqrt(2)) (b) a//sqrt(2) (c) -asqrt(2) (d) asqrt(2)

The nine point centre of the triangle with vertices (1, sqrt(3)), (0, 0) and (2, 0) is

The incentre of triangle with vertices (1, sqrt(3)), (0,0) and (2, 0) is

If at each point of the curve y=x^3-a x^2+x+1, the tangent is inclined at an acute angle with the positive direction of the x-axis, then (a) a >0 (b) a<-sqrt(3) (c) -sqrt(3)<=a<= sqrt(3) (d) non eoft h e s e