Home
Class 12
MATHS
The differential equation of all non-vec...

The differential equation of all non-vectical lines in a plane is given by
(i) `(d^(2)y)/(dx^(2))=0`
(ii) `(d^(2)x)/(dy^(2))=0`
(iii) `(d^(2)x)/(dy^(2))=0and (d^(2)y)/(dx^(2))=0`
(iv) All of these

Promotional Banner

Similar Questions

Explore conceptually related problems

((d^(2)y)/(dx^(2)))^(2) + cos ((dy)/(dx)) = 0

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

y=sinx+e^(x) then (d^(2)x)/(dy^(2)) is:

The differential equations of all circle touching the x-axis at orgin is (a) (y^(2)-x^(2))=2xy((dy)/(dx)) (b) (x^(2)-y^(2))(dy)/(dx)=2xy ( c ) (x^(2)-y^(2))=2xy((dy)/(dx)) (d) None of these

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

For each of the differential equations given below, indicate its order and degree(if defined). (i) (d^(2)y)/(dx^(2))+ 5x((dy)/(dx))^(2) - 6y = log x (ii) ((dy)/(dx))^(3) - 4((dy)/(dx))^(2) + 7y = sin x (iii) (d^(4)y)/(dx^(4)) - sin ((d^(3)y)/(dx^(3)) = 0

The degree of the differential equation (d^(2)y)/(dx^(2))+3((dy)/(dx))^(2)=x^(2)log((d^(2)y)/(dx^(2))), is

If y= sin (sin x) then show that, (d^(2)y)/(dx^(2)) + (tan x) (dy)/(dx) + y cos^(2)x = 0