Home
Class 12
MATHS
The differential equations of all circle...

The differential equations of all circle touching the x-axis at orgin is
(a) `(y^(2)-x^(2))=2xy((dy)/(dx))`
(b) `(x^(2)-y^(2))(dy)/(dx)=2xy`
( c ) `(x^(2)-y^(2))=2xy((dy)/(dx))`
(d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx) + (y)/(x) = x^(2)

x^(2)(dy)/(dx) = x^(2) - 2y^(2) + xy

(dy)/(dx) + 3y = e^(-2x)

(x^(2) - y^(2)) dx + 2xy dy = 0

Solve (x+y)^(2)(dy)/(dx)=a^(2)

The differential equation of all non-vectical lines in a plane is given by (i) (d^(2)y)/(dx^(2))=0 (ii) (d^(2)x)/(dy^(2))=0 (iii) (d^(2)x)/(dy^(2))=0and (d^(2)y)/(dx^(2))=0 (iv) All of these

The differential equation of all conics whose centre lies at origin, is given by (a) (3xy_(2)+x^(2)y_(3))(y-xy_(1))=3xy_(2)(y-xy_(1)-x^(2)y_(2)) (b) (3xy_(1)+x^(2)y_(2))(y_(1)-xy_(3))=3xy_(1)(y-xy_(2)-x^(2)y_(3)) ( c ) (3xy_(2)+x^(2)y_(3))(y_(1)-xy)=3xy_(1)(y-xy_(1)-x^(2)y_(2)) (d) None of these

x (dy)/(dx) + 2y = x^(2)log x

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

Solve 2(dy)/(dx)=(y)/(x)+(y^(2))/(x^(2))