Home
Class 12
MATHS
The solution of the differential equatio...

The solution of the differential equation `(dy)/(dx)=(siny+x)/(sin2y-xcosy)` is
(a) `sin^(2) y= xsiny+(x^(2))/(2)+C`
(b) `sin^(2) y= xsiny-(x^(2))/(2)+C`
( c ) `sin^(2) y= x+siny+(x^(2))/(2)+C`
(d) `sin^(2) y= x-siny+(x^(2))/(2)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation (dy)/(dx) = 1/(xy[x^(2)siny^(2)+1]) is

The solution of the differential equation ye^(x//y)dx=(xe^(x//y)+y^(2)siny)dy is

Solution of the differential equation (x+y(dy)/(dx))/(y-x(dy)/(dx))=(xsin^2(x^2+y^2))/(y^3) .

Solution of the differential equation (xdy)/(x^(2)+y^(2))=((y)/(x^(2)+y^(2))-1)dx , is

The order of the differential equation 2x^(2) (d^(2)y)/(dx^(2))-3(dy)/(dx) + y = 0 is

(d)/(dx) (x^(2) + sin^(2) x)^(3) =…….

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)

Differentiate sin x^(2) + sin^(2)x + sin^(2) (x^(2))

Solve (dy)/(dx)=sin^(2) (x+3y)+5