Home
Class 12
MATHS
Let (dy)/(dx)+y=f(x) where y is a contin...

Let `(dy)/(dx)+y=f(x)` where y is a continous fuction of x with y(0) =1 and `f(x)={{:(e^(-x),if 0lexle2),(e^(-2), if xgt2):}` Which is of the following hold(s) good?

A

`y(1)=2e^(-1)`

B

`y'(1)=-e^(-1)`

C

`y(3)=-2e^(-3)`

D

`y'(3)=-2e^(-3)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx) + 3y = e^(-2x)

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f'(1)=1, then f(e) is.

Let f is a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx, f(0) = (4-e^(2))/(3) , find f(x).

Given f(x)={3-[cot^(-1)((2x^3-3)/(x^2))]forx >0{x^2}cos(e^(1/x))forx<0 (where {} and [] denotes the fractional part and the integral part functions respectively). Then which of the following statements do/does hold good?

Consider the function f(x)=f(x)={{:(x-1",",-1lexle0),(x^(2)",", 0lexle1):} and " "g(x)=sinx. If h_(1)(x)=f(|g(x)|) " and "h_(2)(x)=|f(g(x))|. Which of the following is not true about h_(2)(x) ?

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)

Let f(x+y) = f(x) + f(y) - 2xy - 1 for all x and y. If f'(0) exists and f'(0) = - sin alpha , then f{f'(0)} is

Find (dy)/(dx) : x= e^(cos 2t) and y= e^(sin 2t) show that, (dy)/(dx)= (-y log x)/(x log y)

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation