Home
Class 12
MATHS
(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)...

`(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)`

A

`2ye^(tan-1x)=e^(2tan-1x)+C`

B

`ye^(tan-1x)=e^(2tan-1x)+C`

C

`2ye^(tan-1x)=e^(2tan-1x)+C`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx) + 3y = e^(-2x)

(x + y )(dy)/(dx) = 1

(1 + x^(2))(dy)/(dx) + 2xy = (1)/(1 + x^(2)), y = 0 when x= 1

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x), -a < x < a.

If y= sin^(-1)x , show that (1 -x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)=0

The solution of (dy)/(dx)=((x-1)^2+(y-2)^2tan^(- 1)((y-2)/(x-1)))/((x y-2x-y+2)tan^(- 1)((y-2)/(x-1))) is equal to

If y = e^(a cos^(-1)x) show that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx) -a^(2)y= 0 . Where -1 le x le 1

If y= e^(cos^(-1)x), -1 le x le 1 , then prove that (1-x^(2)) (d^(2)y)/(dx^(2))-x (dy)/(dx)- y= 0

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0