Home
Class 12
MATHS
Solve (xdx+ydy)/(xdy-ydx)=sqrt((a^(2)-x^...

Solve `(xdx+ydy)/(xdy-ydx)=sqrt((a^(2)-x^(2)-y^(2))/(x^(2)+y^(2))`

A

`sin^(-1)(sqrt(x^(2)+y^(2)))=atan^(-1)+c`

B

`sin^(-1)(sqrt(x^(2)+y^(2)))=(1)/(a)tan^(-1)((y)/(x))+c`

C

`sin^(-1)(sqrt(x^(2)+y^(2)))=tan^(-1)((y)/(x))+c`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

x dy - y dx = sqrt(x^(2) + y^(2)) dx

Solve [2sqrt(x y)-x]dy+ydx=0

Solve (x+y)^(2)(dy)/(dx)=a^(2)

Solve (dy)/(dx)+2y=cos x.

Solve (x+y(dy)/(dx))/(y-x(dy)/(dx))=x^2+2y^2+(y^4)/(x^2)

Solve 2(dy)/(dx)=(y)/(x)+(y^(2))/(x^(2))

If sqrt(1-x^(2)) + sqrt(1 -y^(2))= a(x-y) , then prove that (dy)/(dx)= sqrt((1-y^(2))/(1-x^(2))) . (Where |x| le 1, |y| le 1 )

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))