Home
Class 12
MATHS
Let y(x) be a function satisfying (d^(2)...

Let `y(x)` be a function satisfying `(d^(2)y)/(dx^(2))-(dy)/(dx)+e^(2x)=0`, y(0)=2 and `y^(')(0)=1`. If maximum value of `y(x)` is `y(alpha)`, then integral part of `2alpha` is……………..

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

((d^(2)y)/(dx^(2)))^(2) + cos ((dy)/(dx)) = 0

(dy)/(dx) + 3y = e^(-2x)

If e^(y) (x+ 1)=1 , show that (d^(2)y)/(dx^(2))= ((dy)/(dx))^(2)

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y= 3e^(2x) + 2e^(3x) , prove that (d^(2)y)/(dx^(2))-5 (dy)/(dx) + 6y= 0

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0