Home
Class 12
MATHS
Let y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^...

Let `y^(prime)(x)+y(x)g^(prime)(x)=g(x)g^(prime)(x),y(0)=0,x in R ,` where `f^(prime)(x)` denotes `(dy(x))/(dx),` and `g(x)` is a given non-constant differentiable function on `R` with `g(0)=g(2)=0.` Then the value of `y(2)` is______

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) and g(x) are non-periodic functions, then h(x)=f(g(x)) is

Check for identical f(x)=[{x}],g(x)={[x]} [Note that f(x) and g(x) are constant functions]

Let g(x) = ln f(x) where f(x) is a twice differentiable positive function on (0, oo) such that f(x+1) = x f(x) . Then for N = 1,2,3 g''(N+1/2)- g''(1/2) =

If f(x)= int_(0)^(x)(f(t))^(2) dt, f:R rarr R be differentiable function and f(g(x)) is differentiable at x=a , then

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, the prove that f(x)>0AAx in Rdot

If f(x)= sqrtx and g(x)= x be two functions defined in the domain R^(+) uu {0} , then find the value of (f+g) (x) .

If the functions f(x)=x^(5)+e^(x//3) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .

If y=f(x^(3)),z=g(x^(5)),f'(x)=tanxandg'(x)=secx then find the value of lim_(xrarr0)(dy//dz)/(x) .

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all x, then g''f(x) is equal to

If f(x) - g(x) is constant then f'(x) = g'(x)