Home
Class 12
MATHS
Solve b cos ^(2) ""(C)/(2) +c cos ^(2)...

Solve
`b cos ^(2) ""(C)/(2) +c cos ^(2) ""(B)/(2)` in terms of k, where k is permeter of the `DeltaABC.`

Text Solution

Verified by Experts

The correct Answer is:
`b cos ^(2) ""C/2 +c cos ^(2) ""B/2 =k/2` [where `k=a+b+c,` given]
Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

Prove that in any DeltaABC,cos A=(b^(2)+c^(2)-a^(2))/(2bc) where a, b and c are the magnitudes of the sides opposite to the vertices A, B and C respectively.

If sin (A-B) =(1)/(2) ,cos (A+B) =(1)/(2) , where 0^(@) angle A +B le 90 ^(@) and A gt B find A and B

For DeltaABC prove that, (a-b)^(2)cos^(2)""(C)/(2)+(a+b)^(2)sin^(2)""(C)/(2)=c^(2)

If a,b,c are three terms in A.P and a^(2), b^(2), c^(2) are in G.P. and a + b + c = (3)/(2) then find a. (where a lt b lt c )

If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)

if tan ^(2)""(pi-A)/(4)+tan^(2)""(pi-B)/(4) + tan^(2)""(pi-C)/(4) =1, then DeltaABC is

intsqrt( ( cos x - cos^(3) x)/( 1 - cos^(3) x)) dx = ........+ C . ( where x in R - { (kpi)/( 2)//k in Z} )

If the line x=y=z intersect the line xsinA+ysinB+zsinC-2d^(2)=0=xsin(2A)+ysin(2B)+zsin(2C)-d^(2), where A, B, C are the internal angles of a triangle and "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2)=k then the value of 64k is equal to

Verify that the function y = c_(1) e^(ax) cos bx + c_(2)e^(ax) sin bx , where c_(1),c_(2) are arbitrary constants is a solution of the differential equation (d^(2)y)/(dx^(2)) - 2a(dy)/(dx) + (a^(2) + b^(2))y = 0