Home
Class 12
MATHS
In any Delta ABC, prove the following : ...

In any `Delta ABC,` prove the following : `r_1=rcot(B/2)cot(C/2)`

Text Solution

Verified by Experts

The correct Answer is:
`r cot B//2. cot C//2 =r_(1)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following : 2cot^(-1)(2)+cosec^(-1)(5/3)=pi/2

In a triangle ABC, prove that (cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))

If A+B+C=pi , prove that : cot (A/2)+ cot(B/2) + cot(C/2) = cot(A/2) cot (B/2) cot (C/2)

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that : a(bcosC-c cosB)=b^(2)-c^(2)

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that : (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0 .

In triangle ABC, prove that, tan((B-C)/(2))=(b-c)/(b+c)cot((A)/(2)) tan((C-A)/(2))=(c-a)/(c+a)cot((B)/(2)) tan((A-B)/(2))=(a-b)/(a+b)cot((C)/(2))