Home
Class 12
MATHS
If A,B,C are the angles of a triangle th...

If A,B,C are the angles of a triangle then prove that `cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)`

Text Solution

Verified by Experts

The correct Answer is:
`cos A + cos B+cos C=1 + r/R`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B and C are angles of a triangle, then the determinant |{:(-1,cosC,cosB),(cosC,-1,cosA),(cosB,cosA,-1):}| is equal to "........."

If A, B and C are interior angles of a triangle ABC, then show that sin((B+C)/2)=cos(A/2)

If DeltaABC is a right angle triangle then prove that cos^(2)A+cos^(2)B+cos^(2)C=1iffsin^(2)A+sin^(2)B+sin^(2)C=2

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that : acosA+bcosB+c cosC=2asinBsinC

For any triangle ABC, prove that : a(bcosC-c cosB)=b^(2)-c^(2)

If A , B and C are interior angles of triangle ABC ,then show that sin ((B+C)/( 2) )=cos (A) /(2)

If A , B and C are interior angles of a triangle ABC, then show that tan ((A+B) /(2)) =cot (C/2)

For any triangle ABC, prove that : (a+b)/(c)=(cos((A-B)/(2)))/(sin""(C)/(2))

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))