Home
Class 12
MATHS
If g, h, k denotes the side of a pedal t...

If g, h, k denotes the side of a pedal triangle, then prove that
`(g)/(a^(2))+ (h)/(b^(2))+ (k)/(c^(2))=(a^(2)+b^(2) +c^(2))/(2 abc)`

Text Solution

Verified by Experts

The correct Answer is:
`(g)/(a^(2))+(h)/(b^(2))+(h)/(c^(2))=(a^(2)+b^(2)+c^(2))/(2abc)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If l, m, n denote the side of a pedal triangle, then (l)/(a ^(2))+(m)/(b^(2))+(n)/(c ^(2)) is equal to

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For DeltaABC , prove that, (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc) .

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that : ((b^(2)-c^(2))/(a^(2)))sin2A+((c^(2)-a^(2))/(b^(2)))sin2B+((a^(2)-b^(2))/(c^(2)))sin2C=0

For any triangle ABC, prove that : (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0 .

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

If A , B and C are interior angles of a triangle ABC, then show that tan ((A+B) /(2)) =cot (C/2)

For any triangle ABC, prove that : (a+b)/(c)=(cos((A-B)/(2)))/(sin""(C)/(2))