Home
Class 12
MATHS
In a triangle ABC, if (a+b+c)(a+b-c)(b+c...

In a triangle ABC, if `(a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^2b^2c^2)/(a^2+b^2+c^2)` then the triangle is

A

isosceles

B

right angled

C

equilateral

D

obtuse angled

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

For any triangle ABC, prove that : a(bcosC-c cosB)=b^(2)-c^(2)

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

If a,b,c are in AP and (a+2b-c)(2b+c-a)(c+a-b)=lambdaabc , then lambda is

For any triangle ABC, prove that : (a+b)/(c)=(cos((A-B)/(2)))/(sin""(C)/(2))

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))

If in a triangle ABC, /_C=60^@ , then prove that 1/(a+c)+1/(b+c)=3/(a+b+c)