Home
Class 12
MATHS
Prove that in triangleABC, a^3cos(B-C)+b...

Prove that in `triangleABC, a^3cos(B-C)+b^3cos(C-A)+c^3cos(A-B)=3abc`

Text Solution

Verified by Experts

The correct Answer is:
`therefore a^(3) cos (B-C) +b^(3) (C-A) +c^(3) cos (A-B) =3abc`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, a^(3)sin(B-C)+b^(3)sin(C-A)+c^(3)sin(A-B)=0

Prove that (sin(B-C))/(cos B cos C)+(sin(C-A))/(cos C cos A)+(sin(A-B))/(cos A cos B)=0

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

Prove that in any DeltaABC,cos A=(b^(2)+c^(2)-a^(2))/(2bc) where a, b and c are the magnitudes of the sides opposite to the vertices A, B and C respectively.

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))

If A , B and C are interior angles of triangle ABC ,then show that sin ((B+C)/( 2) )=cos (A) /(2)

Prove the followings : If cos^(-1)a+cos^(-1)b+cos^(-1)c=pi then a^(2)+b^(2)+c^(2)+2abc=1 .

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)