Home
Class 12
MATHS
In a triangle ABC, prove that (cot(A/...

In a triangle ABC, prove that `(cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)`

Text Solution

Verified by Experts

The correct Answer is:
`(cot A//2+cot B//2+cot C//2)/(cot A + cot B+cot C)=>((a+b+c)^(2))/((a^(2)+b^(2)+c^(2)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cot (A/2)+ cot(B/2) + cot(C/2) = cot(A/2) cot (B/2) cot (C/2)

For any triangle ABC, prove that : a(bcosC-c cosB)=b^(2)-c^(2)

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))

In any Delta ABC, prove the following : r_1=rcot(B/2)cot(C/2)

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

Prove that : cot(pi/4-2cot^(-1)3)=7

For any triangle ABC, prove that : sin""(B-C)/(2)=(b-c)/(a)cos((A)/(2))

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))

For any triangle ABC, prove that : (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0 .