Home
Class 12
MATHS
If a,b,c are in HP, then prove that sin ...

If a,b,c are in HP, then prove that `sin ^(2) ""(A)/(2), sin ^(2) ""(B)/(2), sin ^(2) ""(C )/(2)` are also in HP.

Text Solution

Verified by Experts

The correct Answer is:
`=(ab)/((s-a)(s-b))+(bc)/((s-b)(s-c))=RHS`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

Differentiate sin x^(2) + sin^(2)x + sin^(2) (x^(2))

For DeltaABC prove that, (a-b)^(2)cos^(2)""(C)/(2)+(a+b)^(2)sin^(2)""(C)/(2)=c^(2)

a,b,c,d are in G.P. Prove that a^(2)-b^(2),b^(2)-c^(2), c^(2)-d^(2) are also in G.P.

Prove that cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)

Prove that sin^(2)6x-sin^(2)4x=sin2xsin10x

Prove that, (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)((A-B)/(2))

Prove that, sin^(2)((pi)/(8)+(A)/(2))-sin^(2)((pi)/(8)-(A)/(2))=(1)/(sqrt(2))sinA

If y= A sin x + B cos x , then prove that (d^(2)y)/(dx^(2)) +y= 0

(cos x- cos y) ^(2) + (sin x - sin y) ^(2) =4 sin ^(2) "" ( x-y)/(2)