Home
Class 12
MATHS
In a cyclic quadrilateral ABCD, prove th...

In a cyclic quadrilateral ABCD, prove that `tan ^(2)""(B)/(2)=((s-a)(s-b))/((s-c)(s-d)),a,b,c, and d` being the lengths of sides ABC, CD and DA respectively and s is semi-perimeter of quadrilateral.

Text Solution

Verified by Experts

The correct Answer is:
`tan ^(2) ""B/2 =((s- a)(s-b))/((s-d)(s-c))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))

For any triangle ABC, prove that : (b+c)cos((B+C)/(2))=acos((B-C)/(2))

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

If A(-5, 7), B(-4, -5) , C(-1, -6) and D(4,5) are the vertices of a quadrilateral, find the area of the quadrilateral ABCD

A,B,C and D have position vectors a,b,c and d, respectively, such that a-b=2(d-c). Then,

In quadrilateral ABCD, /_A+/_B= 150^(@) Then /_C+/_D= …….

In a quadrilateral ABCD, vec(AB)=vec(b),vec(AD)=vec(d) and vec(AC)=m vec(b)+p vec(d)(m+p ge1) . The area of the quadrilateral ABCD is ……………..

If the vectors vec a , vec b ,a n d vec c form the sides B C ,C Aa n dA B , respectively, of triangle A B C ,t h e n

ABCD is a rectangle formed by the points A(-1, -1) , B(-1, 4), C(5,4) and D(5, -1) . P,Q R S are the midpoints of AB, BC, CD, and DA respectively. Is the quadrilateral PQRS a square ? a rectangle ? or a rhombus ? Justify your answer.