Home
Class 12
MATHS
In the DeltaABC, if (a ^(2) +b^(2))sin ...

In the `DeltaABC, ` if `(a ^(2) +b^(2))sin (A-B) =(a^(2) -b^(2)) sin (A+B).` Prove that the triangle is either isosceles or right angled.

A

Right angled or isosceles

B

Right angled and isosceles

C

Equiliateral

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle. if(a^2-b^2)/(a^2+b^2)=("sin"(A-B))/("sin"(A+B)) , then prove that the triangle is either right angled or isosceles.

In a triangle ABC, if (a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^2b^2c^2)/(a^2+b^2+c^2) then the triangle is

For DeltaABC , prove that, (a+b)/(c)=(cos((A-B)/(2)))/(sin""(C)/(2)) .

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

In a triangle ABC, sin A- cos B = Cos C , then angle B is

Prove that the product of the lengths of the perpendiculars drawn from the points ( sqrt(a^(2) - b^(2) ), 0) and ( - sqrt(a^(2) - b^(2) ), 0) to the line (x)/( a) cos theta + (y)/( b) sin theta =1 is b^2 .

If y= a sin x + b cos x then, y^(2) + (y_(1))^(2) = ……. (a^(2) + b^(2) ne 0)

Prove that in any DeltaABC,cos A=(b^(2)+c^(2)-a^(2))/(2bc) where a, b and c are the magnitudes of the sides opposite to the vertices A, B and C respectively.

In DeltaABC,(sinA)/(sinC)=(sin(A-B))/(sin(B-C)) then prove that a^(2),b^(2),c^(2) are in A.P.