Home
Class 12
MATHS
Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c)...

Prove that `((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A`

A

`cos ^(2)A`

B

`sin^(2)A`

C

`cos A cos B cos C`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if (a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^2b^2c^2)/(a^2+b^2+c^2) then the triangle is

Prove that the (a, b+c), (b, c+a) and (c, a+b) are collinear.

Prove that, tan((A)/(2)+B)=(c+b)/(c-b)tan((A)/(2))

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

Prove that a(bcosC-c cosB)=b^(2)-c^(2) .

For DeltaABC , prove that, (a+b)/(c)=(cos((A-B)/(2)))/(sin""(C)/(2)) .

For DeltaABC prove that, (a-b)^(2)cos^(2)""(C)/(2)+(a+b)^(2)sin^(2)""(C)/(2)=c^(2)

For DeltaABC , prove that, (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc) .

Using the property of determinants andd without expanding in following exercises 1 to 7 prove that |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

If a^(2) + 2bc, b^(2) + 2ac, c^(2) + 2ab are in A.P then prove that (1)/(b-c), (1)/(c-a) and (1)/(a-b) are in A.P.