Home
Class 12
MATHS
In a Delta ABC, if cos A+cos C=4 sin^(2)...

In a `Delta ABC, if cos A+cos C=4 sin^(2)((B)/(2)),` then a,b,c are in

A

AP

B

GP

C

HP

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then then one angle must be exactly equal to

In a Delta ABC with vertices A(1,2), B(2,3) and C(3, 1) and angle A = angle B = cos^(-1)((1)/(sqrt(10))), angle C = cos^(-1)((4)/(5)) , then find the circumentre of Delta ABC .

With usual notatins, if in a Delta ABC,(b+c)/(11)=(c+a)/(12) =(a+b)/(13), then prove that (cos A)/(7) =(cos B)/(19) =(cos C)/(25).

Solve b cos ^(2) ""(C)/(2) +c cos ^(2) ""(B)/(2) in terms of k, where k is permeter of the DeltaABC.

In any Delta ABC, prove the following : r_1=rcot(B/2)cot(C/2)

In a Delta ABC , angles A, B, C are in AP. If f(x) = lim_(A to C) (sqrt(3 - 4 sin A sin C))/(|A-C|) , then f'(x) is equal to ..........

Let (b cos x)/(2 cos 2x-1)=(b + sin x)/((cos^(2) x-3 sin^(2) x) tan x), b in R . Equation has solutions if