Home
Class 12
MATHS
If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)...

If `c^(2)=a^(2) +b^(2),` then `4s(s-a)(s-b)(s-c)` is equal to

A

` s^(4)`

B

`b^(2)c ^(2)`

C

`c^(2)a ^(2)`

D

`a ^(2)b ^(2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(a) O^(-) + e^(-) to (b) S + e ^(-) to (C ) S^(-) + e ^(-) to

Using the properties of determinants, prove the following It 2s=a+b+c then |{:(a^2,(s-a)^2,(s-a)^2),((s-b)^2,b^2,(s-b)^2),((s-c)^2,(s-c)^2,c^2):}|=2s^3(s-a)(s-b)(s-c)

Statement I If the sides of a triangle are 13, 14 15 then the radius of in circle =4 Statement II In a DeltaABC, Delta = sqrt(s (s-a) (s-b) (s-c)) where s=(a+b+c)/(2) and r =(Delta)/(s)

If in an AP, S_(n)= q n^(2) and S_(m)= qm^(2) , where S_(r ) denotes the sum of r terms of the AP, then S_(q) equals to,