Home
Class 12
MATHS
Let A=[{:(a,b,c),(p,q,r),(1,1,1):}]and B...

Let `A=[{:(a,b,c),(p,q,r),(1,1,1):}]and B=A^(2)`
If `(a-b)^(2) +(p-q)^(2) =25, (b-c) ^(2)+ (q-r)^(2)= 36 and (c-a)^(2) +(r-p)^(2)=49,` then det B is

A

192

B

864

C

2456

D

`25xx36xx47`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2,b,c, 23 are in G.P then (b-c)^(2)+ (c-2)^(2) + (23-b)^(2) = …….

If x, y in R and |{:((a ^(x) + a ^(-x) ) ^(2) , (a ^(x) - a ^(-x) ) ^(2), 1),((b ^(x) + b ^(-x)) ^(2),(b ^(x) - b ^(-x) ) ^(2) , 1), ( ( c ^(x) + c ^(-x)) ^(2) , (c ^(x) - c ^(-x)) ^(2) , 1):}|=2 y + 6 then y = ____________.

If a(p+q)^2+2b p q+c=0 and a(p+r)^2+2b p r+c=0(a!=0) , then

If A xx B={(,(p,q),(p,r)),(,(m,q),(m,r)):}} , find A and B.

Show that (b-c)/(r _(1))+ (c-a)/(r _(2))+(a-b)/(r _(3)) =0.

Prove that: |{:(a, b, c), (x, y, z), (p, q, r):}|=|{:(y, b, q), (x, a, p), (z, c, r):}|

a,b,c,d are in G.P. Prove that a^(2)-b^(2),b^(2)-c^(2), c^(2)-d^(2) are also in G.P.

If x=a + (a)/(r ) + (a)/(r^(2)) + …..oo, y= b - (b)/(r ) + (b)/(r^(2))-……..oo and z= c + (c )/(r^(2)) + (c )/(r^(4))+ ….oo then prove that (xy)/(z)= (ab)/(c )

Two balls , having linear momenta vec(p)_(1) = p hat(i) and vec(p)_(2) = - p hat(i) , undergo a collision in free space. There is no external force acting on the balls. Let vec(p)_(1) and vec(p)_(2) , be their final momenta. The following option(s) is (are) NOT ALLOWED for any non -zero value of p , a_(1) , a_(2) , b_(1) , b_(2) , c_(1) and c_(2) (i) vec(p)_(1) = a_(1) hat(i) + b_(1) hat(j) + c_(1) hat(k) , vec(p)_(2) = a_(2) hat(i) + b_(2) hat(j) (ii) vec(p)_(1) = c_(1) vec(k) , vec(p)_(2) = c_(2) hat(k) (iii) vec(p)_(1) = a_(1) hat(i) + b_(1) hat(j) + c_(1) hat(k) ,vec(p)_(2) = a_(2) hat(i) + b_(2) hat(j) - c_(1) hat(k) (iv) vec(p)_(1) = a_(1) hat(i) + b_(1) hat(j) , vec(p)_(2) = a_(2) hat(i) + b_(1) hat(j)

If a,b,c are three terms in A.P and a^(2), b^(2), c^(2) are in G.P. and a + b + c = (3)/(2) then find a. (where a lt b lt c )