Home
Class 12
MATHS
In triangle, A B Cif2a^2b^2+2b^2c^2=a^4+...

In triangle, `A B Cif2a^2b^2+2b^2c^2=a^4+b^4+c^4,` then angle B is equal to `45^0` (b) `135^0` `120^0` (d) `60^0`

A

`45^(@)`

B

`135^(@)`

C

`120^(@)`

D

`60^(@)`

Text Solution

Verified by Experts

The correct Answer is:
A, B
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if (a+b+c)(a+b-c)(b+c-a)(c+a-b)=(8a^2b^2c^2)/(a^2+b^2+c^2) then the triangle is

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

If the quadratic equations, a x^2+2c x+b=0a n da x^2+2b x+c=0(b!=c) have a common root, then a+4b+4c is equal to: a. -2 b. -2 c. 0 d. 1

If a ,\ b ,\ &\ c are non zero real numbers, then |b^2c^2bcb+c c^2a^2cac+a a^2b^2aba+b| is equal to a. a^2b^2c^2(a+b+c) b. a b c(a+b+c)^2 c. zero d. none of these

If the roots of x^2-b x+c=0 are two consecutive integers, then b^2-4c is 0 (b) 1 (c) 2 (d) none of these

For any triangle ABC, prove that : (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0 .

Show that straight lines (A^2-3B^2)x^2+8A Bx y(B^2-3A^2)y^2=0 form with the line A x+B y+C=0 an equilateral triangle of area (C^2)/(sqrt(3(A^2+B^2))) .

For any "Delta"A B C the value of determinant |sin^2\ \ A cot A1sin^2B cot B1sin^2\ \ C cot C1| is equal to- s in A s in B s in C b. 1 c. 0 d. s in A+s in B+s in C

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(3)c^(2) is