Home
Class 12
MATHS
Statement I If in a triangle ABC sin ^(2...

Statement I If in a triangle `ABC sin ^(2) A+sin ^(2)B+sin ^(2)C=2,` then one of the angle must be `90^(@).` Statement II In any triangles ABC `cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C`

A

Both Statement I and Statement II are correct and Statement II is the correct explanation of Statement I

B

Both Statement I and Statement II are correct and Statement II is not the correct explanation of Statement I

C

Statement I is correct but Statement II is incorrect

D

Statement II is correct but Statement I is incorrect

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC, cos 3A + cos 3B + cos 3C = 1 , then then one angle must be exactly equal to

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

int sin x*cos x*cosx2x *cos 4x*cos 8x* cos 16x dx=....+c

If A,B,C are the angles of a triangle then prove that cosA+cosB-cosC=-1+4cos(A/2)cos(B/2)sin(C/2)

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

If sin (A-B) =(1)/(2) ,cos (A+B) =(1)/(2) , where 0^(@) angle A +B le 90 ^(@) and A gt B find A and B

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is