Home
Class 12
MATHS
In a Delta ABC, the angles A nad B are ...

In a `Delta ABC, ` the angles A nad B are two values of `theta` satisfying `sqrt3 cos theta + sin theta =k,` where `|K| lt 2,` then show triangles is obtuse angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

z=i+sqrt(3)=r(cos theta+sin theta)

The set of values of theta satisfying the inequatioin 2sin^(2)theta-5sintheta+2 gt 0, where o lt theta lt 2pi , is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

Find the general solution of the equation (sqrt3-1) sin theta +(sqrt3 + 1)cos theta = 2

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

In triangle ABC, right angled at B, if tanA=1/(sqrt3) . Find the value of sin A cos C + cos A sin C

If |k|=5 and 0^(@) le theta le 360^(@) , then the number of different solution of 3 cos theta + 4 sin theta =k is

Minimum value of the expression cos^2theta-(6 sintheta cos theta) + 3 sin^2theta + 2 , is

If 3 cos theta+4 sin theta=A sin (theta+alpha) , then values of A and alpha are

If costheta + sin theta = sqrt2 cos theta , prove that cos theta - sin theta = sqrt2 sin theta .