Home
Class 12
MATHS
Let P be the point inside that Delta ABC...

Let P be the point inside that `Delta ABC.` Such that `angle APB=angle BPC=angle CPA. ` Prove that
`PA+ PB +PC =sqrt((a^(2)+b^(2)+ c^(2))/(2)+ 2sqrt3Delta,)where a,b,c Delta` are the sides and the area of `Delta ABC.`

Promotional Banner

Similar Questions

Explore conceptually related problems

ABC is an isosceles triangle right angled at C. Prove that AB^(2) = 2AC^(2) .

ABC is an isosceles triangle, right angled at C. Prove that AB^(2)= 2AC^(2) .

For any triangle ABC, prove that : (sin(B-C))/(sin(B+C))=(b^(2)-c^(2))/(a^(2))

For any triangle ABC, prove that : a(bcosC-c cosB)=b^(2)-c^(2)

In DeltaABC, let b=6, c=10and r_(1) =r_(2)+r_(3)+r then find area of Delta ABC.

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

If DeltaABC is a right angle triangle then prove that cos^(2)A+cos^(2)B+cos^(2)C=1iffsin^(2)A+sin^(2)B+sin^(2)C=2

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

For any triangle ABC, prove that : (a-b)/(c )=(sin((A-B)/(2)))/(cos((C)/(2)))

ABC is an isosceles triangle with AB = AC. Draw AP bot BC to show that angle B = angle C