Home
Class 12
MATHS
Solve sin^(-1) x - cos^(-1) x = cos ^(-1...

Solve `sin^(-1) x - cos^(-1) x = cos ^(-1). sqrt3/2`.

Text Solution

Verified by Experts

The correct Answer is:
`x = sqrt3/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

Solve sin [2 cos^(-1) { cot (2 tan^(-1) x)}]= 0

Solve cos^(50) x- sin^(50)x=1

solve :sin^-1x+sin^-1 2x=pi/3

Solve the equation : 2 tan^(-1) ( 2x - 1) = cos ^(-1) x .

Find the values of the followings : sin^(-1)(-1/2)+cos^(-1)(-sqrt3/2)

if 0 lt x lt 1 then tan^(-1) (sqrt(1-x^2)/(1+x^2)) is equal to (i) 1/2 cos^(-1)x (ii) cos^(-1)sqrt((1+x)/2) (iii) sin^(-1)sqrt((1-x)/2) (iv) 1/2 tan^(-1)((1+x)/(1-x))

The value of tan((sin^(-1)x+cos^(-1)x)/2) , when x=sqrt3/2 , is ______