Home
Class 12
MATHS
Prove that tan ^(-1)(1/5) + tan^(-1)(1/...

Prove that `tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1). 1/7 + tan^(-1). 1/13 = tan^(-1). 2/9

Prove that : tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt5) .

Prove that: 2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo =pi/4

tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3) = _______

Prove that : 2"sin"^(-1)3/5="tan"^(-1)24/7