Home
Class 12
MATHS
If sin^(-1) x + sin^(-1) y + sin^(-1) z ...

If `sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz`.

Text Solution

Verified by Experts

The correct Answer is:
`=2xyz`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the followings : If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz .

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

solve :sin^-1x+sin^-1 2x=pi/3

If sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is ____

If y= sin (pt), x= sin t , then prove that (1- x^(2))y_(2)-xy_(1)+ p^(2)y= 0

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to

(sin^(-1) x)^2 + (sin^(-1) y)^2 + 2(sin^(-1) x)(sin^(-1) y) = pi^2 , then x^2+y^2 is equal to

Find (dy)/(dx) , If y= sin^(-1) x + sin^(-1) sqrt(1 -x^(2)), 0 le x le 1

If y= sin^(-1)x then prove that (1-x^(2))(d^(2)y)/(dx^(2))-x (dy)/(dx)=0

If x^(2)+y^(2)+z^(2)-2xyz=1 , then the value of (dx)/(sqrt(1-x^(2)))+(dy)/(sqrt(1-y^(2)))+(dz)/(sqrt(1-z^(2))) is equal to………..