Home
Class 12
MATHS
Find the domain and range of f(x)=sin^(-...

Find the domain and range of `f(x)=sin^(-1)(log[x])+log(sin^(-1)[x])`, where `[*]` denotes the greatest integer function.

A

1

B

2

C

0

D

`{log . Pi/2}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

find the domain of f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

domin of f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))] .

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

Range of f(x)=[1/(log(x^(2)+e))]+1/sqrt(1+x^(2)), where [*] denotes greatest integer function, is