Home
Class 12
MATHS
Let x(1) " and " x(2) ( x(1) gt x(2)) be...

Let `x_(1) " and " x_(2) ( x_(1) gt x_(2))` be roots of the equation `sin^(-1) ( cos ( tan^(-1)( cosec ( cot^(-1)x)))) = pi/6 `, then

A

` sin ^(-1). 1/x^(1) + cos ^(-1). 1/x_(2) = pi`

B

`sin^(-1) ( 1/x_(1)) + cos ^(-1) ( 1/x_(2)) = 0 `

C

` sin ^(-1) . 1/x_(1) + sin ^(-1) ( 1/x_(2)) = 0 `

D

` cos^(-1) ( 1/x_(1)) + cos^(-1) ( 1/x_(2)) = pi `

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

cosec[tan^(-1)(cos(cot^(-1)(sec(sin^(-1)a))))] = ______

The solution set of the equation tan^(-1)x-cot^(-1)x=cos^(-1)(2-x) is _____

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

Solve the equation : 2 tan^(-1) ( 2x - 1) = cos ^(-1) x .

Solve the following equation: sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve sin [2 cos^(-1) { cot (2 tan^(-1) x)}]= 0

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

Solve the equation cos(tan^(-1)x)=sin("cot"^(-1)3/4)

Solve the equation tan^(-1) ((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4