Home
Class 12
MATHS
If x(r) " is given by , " x(r+1) = sqrt...

If `x_(r) " is given by , " x_(r+1) = sqrt(1/2 ( 1 + x_(r)))" . Then, show: " cos^(-1) x_(0) = sqrt(1-x_(0)^(2))/(x_(1)x_(2)x_(3))` ......up to infinity .

Text Solution

Verified by Experts

The correct Answer is:
`= cos^(-1) x_(0)`
Promotional Banner

Similar Questions

Explore conceptually related problems

(x+1) sqrt(2x^(2)+3)

x^(2) + x + 1/sqrt(2)=0

lim_(xto1)((sqrt(x)-1)(2x-3))/(2x^(2)+x-3) =……

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

Prove the followings : cos^(-1)x=2sin^(-1)sqrt((1-x)/2)=2cos^(-1)sqrt((1+x)/2)

Differentiate sin^(-1)(2axsqrt(1-a^(2)x^(2)))w.r.t.sqrt(1-a^(2)x^(2)).

Differentiate the following w.r.t.x. e^(cos^(-1)(sqrt(1-x^(2)))),|x|lt1

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?