Home
Class 12
MATHS
If sec^(-1) x = cosec^(-1) y , then fin...

If ` sec^(-1) x = cosec^(-1) y `, then find the value of ` cos^(-1) . 1/x + cos ^(-1) . 1/y`.

Text Solution

Verified by Experts

The correct Answer is:
`pi/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If 4sin^(-1)x+cos^(-1)x=pi then find the value of x.

If sin("sin"^(-1)1/5+cos^(-1)x)=1 , then find the value of x.

Find the value of cos(sec^(-1)x+cosec^(-1)x),|x|ge1

Find the value of cos(sec^(-1)x+cosec^(-1)x),|x|ge1

If x=1/3 , then the value of cos(2cos^(-1)x+sin^(-1)x) = ____

If (2.3)^x = (0.23)^y = 1000 , then find the value of 1/x- 1/y

If cos(2tan^(-1)x)=1/2 , then the value of x is ___

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If (sin^(-1) a)^(2) +( cos^(-1) b)^(2) + ( sec^(-1)c)^(2) + ( cosec^(-1) d)^(2) = ( 5pi^(2))/2 " , then the value of " ( sin^(-1)a)^(2) - ( cos^(-1)b) ^(2) + ( sec^(-1)c)^(2) - ( cosec^(-1)d)^(2)

Find the value of cos( 2 cos^(-1) x + sin^(-1) x) " when " x = 1/5