Home
Class 12
MATHS
The value of underset(|x| rarr oo)("lim"...

The value of `underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x)))` is equal to

A

`-1`

B

`sqrt2`

C

`- 1/sqrt2`

D

`1/sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

sin(tan^(-1)x),|x|lt1 is equal to

tan^(-1)(x/y)-"tan"^(-1)(x-y)/(x+y) is equal to

The value of lim_(xto oo)(x+2)tan^(-1)(x)-(xtan^(-1)x) is

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

Solve sin [2 cos^(-1) { cot (2 tan^(-1) x)}]= 0

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to-

If |x|le1 , then 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) is equal to _____

The value of sin[2tan^(-1)(0.75)] is equal to _____

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to