Home
Class 12
MATHS
Let u = cot^(-1) sqrt(cos 2 theta) - ...

Let `u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta)` , then the value of `sin u` is

A

`cos 2 theta `

B

`sin 2 theta`

C

`tan^(2) theta`

D

`cot^(2) theta`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

sin^(4) theta + cos ^(4) theta + 2sin^(2) theta cos ^(2) theta has value 1.

z=i+sqrt(3)=r(cos theta+sin theta)

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

If tan^(4)theta +tan^(2) theta = 1 , then the value of cos^(4)theta +cos^(2)theta is-

If a= cos theta+ i sin theta , then find the value of (1+a)/(1-a)

Show that (1)/( cos theta ) -cos theta =tan theta .sin theta

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is

If tan(picostheta)=cot(pisintheta) then the value of cos(theta-(pi)/(4)) is ……….

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )