Home
Class 12
MATHS
For any real number x ge 1, the express...

For any real number ` x ge 1`, the expression
`sec^(2) ( tan^(-1)x) - tan^(2) ( sec^(-1) x)` is equal to

A

1

B

2

C

`2x^(2)`

D

`2sqrt2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt3-sec^(-1)(-2) is equal to

tan^(-1)(x/y)-"tan"^(-1)(x-y)/(x+y) is equal to

sin(tan^(-1)x),|x|lt1 is equal to

sec^(2)(tan^(-1)3)+cosec^(2)(cot^(-1)3) = ____

sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)5) = ________

Prove that sec^2(tan^(-1)2)+cos e c^2(cot^(-1)3)=15

The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x .

Find the values of the following : tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to

If 3tan^(-1)x+cot^(-1)x=pi , then x equals to ______