Home
Class 12
MATHS
sum(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2))) i...

`sum_(n=1)^oo(tan^-1((4n)/(n^4-2n^2+2)))` is equal to (A) `tan ^-1 (1/2)+tan^-1 (1/3)` (B) `4tan^-1 (1)` (C) `pi/2` (D) `sec^-1(-sqrt2)`

A

`tan^(-1). 1/2 + tan^(-1). 2/3`

B

`4 tan^(-1) 1`

C

`pi/2`

D

`sec^(-1) ( - sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt3-sec^(-1)(-2) is equal to

Show that ( tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3) = pi

Prove that tan^(-1). 1/2 + tan^(-1) . 1/5 + tan^(-1). 1/8 = pi/4

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

tan^(-1)(1)+tan^(-1)(2)+tan^(-1)(3) = _______

Prove that tan^(-1) 2 + tan^(-1) 3 = (3pi)/4

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4

Prove that: 2tan^(-1)1/2+tan^(-1)1/7=tan^(-1)(31)/(17)

Prove that : tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt5) .

The sum of the infinite terms of the series cot^(-1)(1^2+3/4)+cot^(-1)(2^2+3/4)+cot^(-1)(3^2+3/4)+...+oo is equal to a. tan^(-1)(1) b. tan^(-1)\ \ (2) c. tan^(-1)2\ d. (3pi)/4-tan^(-1)3