Home
Class 12
MATHS
If cos^(-1) . x/a - sin^(-1). y/b = thet...

If `cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0)`, then the maximum value of `b^(2) x^(2) + a^(2) y^(2) + 2ab xy sin theta ` equals

A

`ab`

B

`(a+b)^(2)`

C

`2(a + b)^(2)`

D

`a^(2)b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =

Find (dy)/(dx) : x= cos^(2) theta and y= sin^(2) theta

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

If y= a sin x + b cos x then, y^(2) + (y_(1))^(2) = ……. (a^(2) + b^(2) ne 0)

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

If cos^(4)theta+p, sin^(4)theta+p are the roots of the equation x^(2)+a(2x+1)=0 and cos^(2)theta+q,sin^(2)theta+q are the roots of the equation x^(2)+4x+2=0 then a is equal to

Equation of the line passing through the point ( a cos^(3) theta , a sin^(3) theta ) and perpendicular to the line x sec theta + y cosec theta = a is x cos theta - y sin theta = cos 2 theta .

The value of theta , lying between theta =0 and theta=(pi)/(2) and satisfying the equation . |{:(1+ cos^(2 ) theta , sin^(2) theta , 4 sin 4 theta ),(cos^(2) theta , 1+sin^2 theta , 4 sin 4 theta ),(cos^(2) theta , sin^(2) theta , 1+ 4 sin 4 theta ):}|=0 , is