Home
Class 12
MATHS
Number of values of x satisfying simulta...

Number of values of x satisfying simultaneously `sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 `, is

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x satisfying the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3x is ____

Find the real solutions of tan^(-1)(sqrt(x(x+1)))+sin^(-1)(sqrt(x^(2)+x+1))=pi/2

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

If 1/2tan^(- 1)((2x)/(x^2-1))+cos^(- 1)((x^2-1)/(x^2+1))=(2pi)/3 then x=

Prove the followings : cos^(-1)x=2sin^(-1)sqrt((1-x)/2)=2cos^(-1)sqrt((1+x)/2)

Prove that: tan^(-1)x+tan^(-1)(1/x)=pi/2