Home
Class 12
MATHS
If the numerical value of tan{cos^-1(4/5...

If the numerical value of `tan{cos^-1(4/5)+tan^-1(2/3)}` is `a/b`then a. a+b=23, b.a-b=11, c.3b=a+1, d.2a=3b

A

`a + b = 23`

B

`a -b = 11`

C

`3b = a + 1`

D

`2a = 3b`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sec[tan^(-1)((b+a)/(b-a))-tan^(-1)(a/b)] is ____

The value of cos^(-1)(-1)-sin^(-1)(1) is: a. pi b. pi/2 c. (3pi)/2 d. -(3pi)/2

The value of [tan{pi/4+1/2sin^(-1)(a/b)}+tan{pi/4-1/2sin^(-1)(a/b)}]^(-1)

If tanA=(1)/(2)andtanB=(1)/(3) , then tan(2A+B) is equal to

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(3abc) The minimum value of , where a, b, c in R is

Prove the followings : tan(pi/4+1/2"cos"^(-1)a/b)+tan(pi/4-1/2"cos"^(-1)a/b)=(2b)/a

Find the value of a ,b,c and d from the equation : [{:(a-b,2a+c),(2a-b,3c+d):}]=[{:(-1,5),(0,13):}] .

Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true;2 Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true Statement I: consider D= |a_1a_2a_3 b_1b_2b_3 c_1c_2c_3| let B_1, B_2,\ B_3 be the co-factors \ b_1, b_2, a n d\ b_3 respectively then a_1B_1+a_2B_2+a_3B_3=0 because Statement II: If any two rows (or columns) in a determinant are identical then value of determinant is zero a. A b. \ B c. \ C d. D

If the area of the triangle formed by the points (2a,b), (a+b, 2b+a) and (2b, 2a) be Delta_(1) and the area of the triangle whose vertices are (a+b, a-b), (3b-a, b+3a) and (3a-b, 3b-a) be Delta_(2) , then the value of Delta_(2)//Delta_(1) is

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}