Home
Class 12
MATHS
Let f(x) = sin^(-1) x + cos^(-1) x ". T...

Let `f(x) = sin^(-1) x + cos^(-1) x ". Then " pi/2 ` is equal to

A

`f(- 1/2)`

B

`f(k^(2) - 2k + 3), k in R`

C

`f(1/(1+ k^(2))), k in R`

D

`f(-2)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is

sin^(-1)(1-x)-2sin^(-1)x=pi/2 , then x is equal to

If 4sin^(-1)x+cos^(-1)x=pi , then x = _____

If cos("sin"^(-1)2/5+"cos"^(-1)x)=0 , then x is equal to _____

(sin^(-1) x)^2 + (sin^(-1) y)^2 + 2(sin^(-1) x)(sin^(-1) y) = pi^2 , then x^2+y^2 is equal to

If 4sin^(-1)x+3cos^(-1)x=2pi then x = ______

If f(x)= |cos x- sin x| , then f'((pi)/(3)) is equal to …….

Let f_k(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f_4(x) - f_6(x) equals

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals