Home
Class 12
MATHS
cos^(-1)x = tan^(-1)x, then: a. x^2=((...

`cos^(-1)x = tan^(-1)x`, then:
a. `x^2=((sqrt(5)-1)/2)` b. `x^2=((sqrt(5)+1)/2)`
c. `sin(cos^(-1)x)=((sqrt(5)-1)/2)` d. `tan(cos^(-1)x)=((sqrt(5)-1)/2)`

A

`x^(2) = (sqrt5 -1)/2`

B

`x^(2) = (sqrt5 + 1)/2`

C

`sin ( cos^(-1) x) = (sqrt5 -1)/2`

D

`tan (cos^(-1) x) = (sqrt 5-1)/2`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

Evaluate: tan{1/2cos^(-1)(sqrt5/3)}

Prove the followings : cos^(-1)x=2sin^(-1)sqrt((1-x)/2)=2cos^(-1)sqrt((1+x)/2)

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

If sin^(-1)x+cot^(-1)(1/2)=pi/2,\ t h e n\ x is a. 0 b. 1/(sqrt(5)) c. 2/(sqrt(5)) d. (sqrt(3))/2

If tan(cos^(-1)x)="sin"(cot^(-1)(1/2)) then x is equal to- a. 1/sqrt(5) b. 2/sqrt(5) c. 3/sqrt(5) d. sqrt(5)/3

Show that, sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/sqrt2lexle1

int(x^(3))/(sqrt(1+x^(2)))dx=a(1+x^(2))^((3)/(2))+b* sqrt(1+x^(2))+C

Prove the followings : cot^(-1)((sqrt(1+x^(2))-1)/x)=pi/2-1/2tan^(-1)x